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Modulation by swell of waves and wave groups on the ocean 
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Two of the simpler nonlinear wave systems on water of uniform depth are permanent 
waves and wave groups of permanent envelope. The interaction of each of these wave 
systems with swell of much smaller amplitude and greater wavelength, propagating 
in the same direction, is investigated analytically and numerically. A linear-stability 
analysis of the modulation of these systems by swell shows that they are unstable over 
short times. Calculations of their evolution over longer times confirms that the initial 
exponential growth of the modulations is not sustained, and that cyclic recurrence 
of the modulations occurs in some cases. The modulation of a wave train by swell is 
found to concentrate the energy of the wave train into single waves in turn, a process 
which may cause irreversible nonlinear changes such M wave breaking. In  contrast, 
the only observable effect in the modulation of a wave group by swell is a small slow 
oscillation of the envelope of the group as it propagates. The conclusion is that wave 
trains on the ocean, generated for example by a wind system of long fetch and duration, 
disintegrate under the modulation of swell. Wave groups, however, either wind- 
generated or resulting from the breakdown of wave trains, propagate almost unchanged 
by the presence of swell. 

1. Introduction 
The observed regularity in the waves generated on the ocean by a steady wind 

system suggests that the ocean surface may be modelled locally by a succession of 
wave groups or even by a periodic wave train. This investigation is directed at  the role 
of swell in the evolution of surface waves and wave groups. 

Swell consists of long waves, generated by a remote storm, which are propagating 
through the wave field. Outside the wave field, the swell propagates with its natural 
velocity, but on entering the wave field nonlinear interactions not only change slightly 
the natural velocity of the swell, but also generate side-band modulations to the waves 
in the wave field. The principal role of the swell in the evolution of the wave field is 
that of a trigger at  small wavenumber generating side-band modulations to waves st 
the larger wavenumbers within the wave field. 

When the small nonlinear interactions between waves balance their linear dis- 
persion, permanent waves and nonlinear wave groups of permanent envelope can 
exist. Permanent waves are identified with Stokes waves on deeper water and cnoidal 
waves on shallower water, with a continuous range of wave profiles in between 
(Bryant 1974). Nonlinear wave groups of permanent envelope are shown below to 
occur only on deeper water. The evolution, under the initial influence of the side-band 
modulations caused by swell, of permanent waves and nonlinear wave groups on 
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water of uniform finite depth, is studied here as a model of the interaction of swell with 
surface-wave systems on the oceag. 

Stokes waves are linearly unstable over short times to side-band modulations in the 
same direction on deeper water, and linearly stable to these modulations on shallower 
water (Benjamin 1967; Whitham 1967). Experiments and calculations (Lake et al. 
1977) have found that in a t  least some cases cyclic recurrence of the harmonics occurs 
over longer times. Nonlinear wave groups are linearly unstable over short times to 
side-band modulations in the same direction on deeper water, and calculations 
(Bryant 1979) show that in a t  least some cases cyclic recurrence of the harmonics 
occurs over longer times. 

Cyclic' recurrence here means that a nearly cyclic interchange of energy occurs 
within a dominant set of harmonics for which the nonlinear interactions lie near 
resonance. The resonance is nearly cyclic, not exactly cyclic, because weaker non- 
linear interactions occur with all other harmonics present. Yuen & Ferguson (1978a) 
presented examples (demonstrated below) in which there are two or more competing 
sets of harmonics having nonlinear interactions near resonance, in which case the 
cyclic recurrence is obscured. The distinguishing feature in such examples is that the 
members of these sets of harmonics continue to dominate the wave field, even though 
a pattern of recurrence cannot be discerned. 

Attention has been restricted here, as a first step, to interactions between waves and 
swell propagating in the same direction. When the waves and swell propagate in 
different horizontal directions the possibilities increase for competing sets of harmonics, 
each having nonlinear interactions near resonance. Although cyclic recurrence still 
occurs in some cases (Yuen & Ferguson 1978b), it can be expected that the more 
common situation is that an interchange of energy occurs within different sets of 
dominant harmonics, with no discernible overall pattern of recurrence. 

The evolution equations for a periodic wave train on water of uniform depth are 
derived from Laplace's equation, with the appropriate nonlinear surface-boundary 
conditions, by a perturbation expansion in the amplitude parameter B .  Solutions 
describing permanent waves and nonlinear wave groups are obtained from the 
evolution equations. Calculations are made of the linear stability of these solutions, 
with particular attention being given to the unstable modes. A number of represen- 
tative examples are calculated numerically over long times, these examples being 
interpreted both in terms of wave evolution and wave-envelope evolution. Conclusions 
about ocean wave systems are drawn from the calculations. 

This approach to nonlinear wave interactions complements the more usual approach 
by way of model equations such as the Korteweg-de Vries equation, the cubic 
Schrodinger equation, and their generalizations to two horizontal directions. Although 
model equations have the advantage of producing solutions and their properties by 
analytical methods, they have the disadvantage of being b w d  on approximations 
additional to the small-amplitude approximation. The Korteweg-de Vries equation is 
valid only for long waves, and the cubic Schrodinger equation for wave groups of 
narrow wave band. The present method assumes only the small-amplitude approxi- 
mation, giving it a wider range of validity than model equations, although in most 
examples it does require the assistance of a computer to obtain solutions. It continues 
and extends analytical solutions of the model equations, and has fewer approximations 
than numerical solutions of the model equations. 



Modulation by swell of m v e s  on the ocean 446 

A subsidiary contribution of this investigation is the determination of the range of 
nonlinear wave groups of permanent envelope as a function of water depth. As the 
depth decreases, the shape of the envelope flattens, until at  a certain critical depth the 
family of wave groups tends uniformly to a Stokes wave train. The critical depth is a 
point of bifurcation between permanent waves and wave groups of permanent 
envelope, its value being dependent on the wave-slope parameter and on the central 
wavenumber of the group. These calculations complement those of Hasimoto & Ono 
(1972) ,  who derived the cubic Schrodinger equation for wave groups on water of 
finite depth and, from this, solutions corresponding to wave groups of permanent 
envelope. Although some of their solutions are obtained in 5 4, not all of their solutions 
are physically relevant, for reasons described there. 

A new model for nonlinear wind waves has been proposed by Lake & Yuen (1978) .  
They point out that the modulation of a uniform wave train causes the growth of a 
group structure which has a greater amplitude than the wave train itself because it 
concentrates locally the energy of the wave train. This property is central to some of 
the deductions in their model. However, if the structure of the wind-generated ocean 
surface is that of a succession of groups rather than a uniform wave train, the present 
calculations show that nonlinear modulation does not necessarily cause a significant 
increase in the wave amplitude. For this reason, the applicability of their model is 
dependent on the actual structure of the ocean surface. 

2. Governing equations 
The water-surface displacement is given the form of a periodic wave train of funda- 

mental wavelength 2nl modulated in general by a second periodic wave train of larger 
fundamental wavelength 2nL in the same direction. The length scale L is taken to be 
an integer multiple of 2 in the calculations so that all wavenumbers participating are 
integer multiples of 1/L, a simplification which is made for convenience without loss 
of generality. The mean water depth is h, and the trough-to-crest height of the unper- 
turbed wave train is 2a. The principal non-dimensional ratios are 8 = a/Z, p = h/Z, and 
ko = L/Z. The horizontal co-ordinate x and vertical co-ordinate y are measured in units 
of 1 from an origin in the mean water surface. Time t is meamred in units of (Z/g)*, the 
surface displacement 7 in units of a, and the velocity potential 9 in units of (g2))a. 

The governing equations in these non-dimensional co-ordinates are 

dxz+$,, = 0 ( - P  < Y < 01, ( 2 . 1 ~ )  

#,= 0 on y = - p ,  ( 2 . l b )  

rt - $, + 4 r 9 x ) x  + 4 ~ " T 2 9 X , ) X  = 0b3) on Y = 0 2  ( 2 . l c )  

T + 9t + €T$& + id9t + 9;) + #i~%V,,)t + " B T T x t 9 x  = O(@) on Y = 0. ( 2 . 1 4  
The Fourier-series expansions for 7 and 9 are 

( 2 . 2 ~ )  
1 "  

7 = - c A,(t)expi 
2,=1 

( 2 . 2 b )  

15-2 
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where C.C. denotes complex conjugate, and the Fourier amplitudes are slow functions 
oft. When the Fourier-series expansions for 7 and q5 are substituted into (2.1 c, d), and 
only the O(1) terms retained, the linear solution for forward-propagating waves is 

C, = - i A , / w k + O ( ~ ) ,  ( 2 . 3 ~ )  
found to be 

(2 .3b )  

The latter equation for the linear frequency w, is taken to be the definition of wk, 
although it is noted that the actual frequency in the presence of nonlinear interactions 
differs from wk. 

The Fourier-series expansions for 7 and q4 are substituted again into (2.1 c, d ) ,  with 
the O(E)  terms now being retained. Equation ( 2 . 3 ~ )  is used to replace the amplitudes 
C by the amplitudes A in the O(s)  quadratic terms. A pair of simultaneous first-order 
differential equations for A,, C, is then obtained, from which second-order differential 
equations for either A, or C, alone may be found by elimination. Both equations have 

A; - 2iw,A; = E x quadratic terms + O ( E ~ ) ,  the form 

with the complementary function 

A, = cl+c2exp (2iw,t), 

where cl, c2 are arbitrary constants. Substituting for A, into the Fourier-series expan- 
sion for 7 (equation 2.2a) then expresses the complementary function as a sum of 
forward- and backward-propagating waves. 

There are general procedures for obtaining first-order differential equations for the 
evolution of the Fourier amplitudes as a function of nonlinear interactions between 
waves propagating in all horizontal directions. One such method is that of Watson & 
West (1975). They derive full evolution equations, but in applying them they ignore 
terms involving rapidly oscillating exponentials, which are not expected to contribute 
significantly to the transfer of excitation between wave harmonics. The method used 
below neglects such terms in the course of the derivation of the evolution equations. 
It is equivalent to calculating the evolution of the Fourier amplitudes as a function of 
nonlinear interactions near resonance, with nonlinear interactions far from resonance 
being neglected. 

The initial condition in the present model is that all waves are propagating in the 
forward x-direction only. The subsequent development is dominated by those non- 
linear interactions near resonance. If quadratic interactions are included alone, the 
only interactions near resonance are those generating forward-propagating waves as 
the depth-to-wavelength ratio ,u decreases towards zero. This is one of the basic 
implied assumptions of the Korteweg-de Vries equation. Numerical experiments with 
all quadratic interactions included show that those interactions far from resonance 
add only rapidly oscillating exponentials to the background of the nearly resonantl 
solutions. For this reason, beginning with (2 .3u) ,  backward-propagating waves are 
ignored, a simplification which achieves a considerable economy in the derivation of 
the evolution equations and in their solution. 
An integrating factor for the second-order differential equations is exp ( - 2iw,t). 

The quadratic terms are divided by wk-I + w, + w,, - wl + wk on integration, both 
expressions being O(  1) for all positive k and 1 with the dispersion relation (2 .3b ) .  This 
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is equivalent to the property that backward-propagating waves are far from resonance, 
The constant of integration (denoted by c2 above) is put equal to zero because it 
multiplies backward-propagating waves. The evolution equations for the Fourier 
amplitudes in terms of quadratic interactions, found by integratior, of the second- 
order differential equations, are 

k- 1 

1=1 
A; = )i€ Pk,_1AiAk- leXp(- i (wk- ,+wi-wk) t )  

W 

+ @ E  x ~ k , ~ A ~ A k + , e X p ( - i ( W k + l - W 1 - W k ) t ) + O ( € 2 )  (k = 1,2, ...), ( 2 . 4 ~ )  
1 = 1  

03 

+ +€ &k, 1 A: Ak+l exp ( - i(wk+l- w1- wk) t ) + O(E2) ( k  = 1 , 2, . . . ), (2.4 a) 
1=1 

where A: is the complex-conjugate of A,. The interaction coefficients P and Q are 
given in the appendix. It is noted that ( 2 . 4 ~ )  b) cannot be integrated directly again 

of a magnitude comparable with E for those k and 1 near resonance. A first integral of 
these equations can be found by substituting for either A; or C; back into the original 
pair of first-order differential equations for A, and ck. It is 

because this would involve division by WkA + Wi - Wk) wk+l- - wk, both of which are 

03 

c k  = -iA,/wk+ x &, -IA,Ak-,eXp ( -  i(Uk-1 + WI - wk) t )  
1 = 1  

where 

This equation is the next-order improvement to ( 2 . 3 ~ ) .  
The only tertiary interactions to be included in the evolution equations to the next 

order of magnitude are those for forward-propagating waves which lie near resonance. 
Resonant quartets for waves propagating in all horizontal directions on deep water are 
described by Phillips (1974, figure VII. 6). The only quartets to be included here are 
those with wavenumbers k, I ,  m, k + 1 - m, where k, 1, m lie near a central positive 
wavenumber. This is one of the basic implied assumptions of the cubic Schrodinger 
equation. If waves in all horizontal directions are present, there is an increase in the 
possibilities for resonance consequent on the inclusion of the whole of Phillips' figure 
instead of only part of it. One such interesting possibility (pointed out by a referee) is 
the deep-water resonant quartet (k, k, i k ,  - )k) ,  (0, w,  Qw, @), which places limitations 
on the present calculations and on the cubic Schrodinger equation. Its effect on the 
results derived below, when it occurs, is expected to be the generation of an additional 
set of harmonics in which energy is interchanged, obscuring any cyclic pattern which 
may have been observable otherwise. 

The tertiary-interaction coefficients have been calculated elsewhere by the sub- 
stitution of the linear relation ( 2 . 3 ~ ~ )  into the O(c2) terms of (2.1 c, d),  a procedure which 
is satisfactory on deep water where quadratic interactions are far from resonance. 
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However, because certain quadratic interactions are retained here for the purpose of 
applying the evolution equations to waves on shallow water as well as on deep water, 
the O(s) contribution of ( 2 . 4 ~ )  to the O(E) terms of (2 . lc ,  d) is included for consistency 
in the present evaluation of the O(s2) tertiary interactions. The evolution equations for 
A, with the selected tertiary interactions included are found by the same procedure as 
is described above, and are 

k - 1  

1 = 1  
A; = @€ P k , - I A I A k - l e X P ( - i ( w k - i + W - W k ) t )  

m 

+ x P k , l A l * A k + l e x p ( - i ( w , + , - W l - w k )  t ,  
1=1 

-k iis2 x m P f l - 1  

Rk. 1, m A? A m  Ak+l-m exp ( - i(Wm + Wk+l-m - W l  - Wk) t ,  
1 = 1  n ? = l  

(k = 1,2, ...), (2.5) 

where the interaction coefficient R is given in the appendix. It is noted that 

Rk, I ,  m = Rk, I ,  k+l-m' 

The only independent check that could be devised on the accuracy of these coefficients 
was that they should give the correct parameters for Stokes waves on water of finite 
depth, a check described in 5 3. 

Resonance occurs when a frequency triad or quartet in one of the above expon- 
entials is zero. The frequency triads are never zero in the gravity-wave range, but the 
quartets are zero or nearly zero when the wavenumbers lie within a narrow wave band. 
If such a wave band is centred on wavenumber k,, the above quartet may be rewritten 

The dominant contribution from the tertiary interactions occurs therefore for wave- 
numbers m = k, m = 1, and has the form 

This contribution is proportional to A,, implying that it is equivalent to a nonlinear 
correction to the linear frequency Wk, which now becomes (from ( 2 . 2 ~ ) )  

It will be shown in 5 5 how the eigenvalues calculated from a linear-stability analysis 
of solutions of (2.5) may be identified with these nonlinear frequencies. 

3. Permanent waves 
Permanent waves on water of uniform depth are described by a surface displacement 

( 3 . 1 ~ )  
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where ak (k = 1,2, ...) and c are calculated as functions of s and p. It follows from 

A ,  = a.kexpi(Wk-kC)t (k = 1,2, ...), (3.lb) (2.2a) that 

with ko = 1, so that (2.5) become 

k-1 m 

? = I  1=1 
(wk- kc) a k  = & c pk, -Ialak-l+ he c 'k.1 'k+l  

w k + l - 1  
+l,e2 C C Rk,I,malamak+I-m (k = 1,2 ,... ). (3.2a) 

1=1 m = l  

The geometric relation consequent on the definition of e is 
00 

Z = 1. 
1=1 

(3.2 b) 

Stokes waves are such that a2/a1 = O(s), a3/u2 = O(E) .  Equations (3 .2~)  may then 
be written 

(wl - c) a, = &Pl, lala,+ Qe2Rl, 1, la! + O(e4), (w2 - 2c) a, = 3sP2, -la; + 0(e3), 

and have the solution 

a, = 1 + 0 ( € 2 ) ,  ( 3 . 3 ~ )  

(3.3b) 

When the values for the interaction coefficients are substituted and the expressions 
simplified, Stokes' solution (Whitham 1974, pp. 474-475) is obtained. 

Cnoidal waves on shallow water are such that the harmonics approximate a geo- 
metric sequence with ratio r ,  where r tends towards 1 from below as aZ2/h3 increases 
(Bryant 1974, 3). The increase in the number of harmonics makes analytical solutions 
of (3.2) tedious to calculate. Numerical solutions are easy to calculate, the method used 
being to find the solution for a number N of harmonics, then to increase N step by step 
until a prescribed numerical precision is obtained. The generalized Newton-Raphson 
method is quick and efficient for this purpose. 

The use of numerical methods allows permanent-wave solutions of (2.5) to be calcu- 
lated as continuous functions of e and p. The solutions approximate Stokes waves on 
deeper water and cnoidal waves on shallower water, and comprise part of the set of 
solutions whose properties under modulation are investigated below. 

4. Wave groups of permanent envelope 

described by the surface displacement 
Nonlinear wave groups of permanent envelope on water of uniform depth are 

. k - k o  
k0 

1 kor k 
7 = - akexpi- a,expz- ( 2 - c t )  exp{i(z-wk,t)-im2t} 

k = l  k0 

' - '" (z - ct )  cxp {2i(s - w,,t) - 2im2t} + . . . + C.C. +:( 2 a,expz- (4.1) 1 %=kw k0 
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The principal spectral contribution to the wave group is from the wave band centred on 
k,, the second sum in the description above. Quadratic interactions within this wave 
band generate subsidiary contributions from wavenumbers near 1, and from wave 
bands centred on 2k,, 3k0, . . . . The physical interpretation of this description is that of 
a wave group whose envelope propagates with velocity c (the group velocity at wave- 
number k,), inside which is a wave of frequency wko + a€), where a is to be calculated. 
It is the generalization of the description used previously (Bryant 1979, $3) consequent 
on the inclusion of quadratic interactions. 

If the water surface is to have the description of (4.1), the Fourier amplitudes must 

t (k,, < k < k,,), (4.2~) 

t (k21 < k d k,,), 

A , = <  

\ i  . 
The parameter E is defined from the principal wave band alone by 

kin 

k = h ,  
2 uk= 1. (4.2b) 

The central wavenumber k, is fixed by choosing c to be the group velocity for this 
wavenumber. The set of equations obtained by substituting (4.2~) into (2.5), together 
with (4.2b), is then solved for the complete set of harmonics u k  and the frequency 
correction a. The wave-band limits k,,, k,,, k,,, k21, k,,, . .. are increased step-by-step 
until solutions are obtained to a prescribed precision. The computational effort is 
reduced considerably by including only the tertiary interactions between harmonics 
in each of the wave bands, and not the tertiary interactions between harmonics in 
different wave bands. This simplification is suggested by the property that the tertiary 
interactions are significant only for harmonics within a narrow waveband (cf. (2.6)). 
Calculations with and without this simplification confirm its validity and efficiency. 

Nonlinear wave-group solutions were calculated for a range of values of E ,  p and k,, 
and were added to the set of solutions whose properties under modulation are investi- 
gated below. The effect of changing depth is illustrated in figure 1. As the depth 
decreases, the envelope of the wave group flattens, until the wave group tends towards 
a uniform train of permanent waves. The point of bifurcation between permanent 
waves and nonlinear wave groups is dependent on E and k,. For the values in figure 1 
( E  = 0.1, k, = 10) bifurcation occurs at  p = 1.55. 

The structure of nonlinear wave groups on deep water may be described as being due 
to a balance between the second-order Stokes amplitude correction to the wave speed 
(Whitham 1974, equation (13.123)) and the weak dispersion. If dispersion is considered 
alone, a wave group must gradually disintegrate as the longer waves composing it have 
a greater group velocity than the shorter waves. The effect of the Stokes correction is 
that of a positive mean velocity maximum under the centre of the group, with a region 
of mean velocity convergence forward of the centre and mean velocity divergence 
behind the centre. The longer wares are therefore shortened and their group velocity 
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FIGURE 1. One group wavelength of nonlinear wave groups of permanent envelope, E = 0.1, 
ko = 10, at the depth ratios p = 6, 3, 1.75. The dashed curves are the envelopes, and the solid 
curves are the water-surface displacement at an instant. (Horizontal contraction Sn.) 

reduced as they move ahead of the centre, with the reverse occurring for the shorter 
waves which fall behind the centre. The overall effect of the Stokes amplitude cor- 
rection is therefore to counteract the weak dispersion, allowing the occurrence of wave 
groups of permanent envelope. As the water depth becomes less, a second-order 
uniform mean flow occurs with a negative maximum under the centre of the group 
(Whitham 1974, 5 16.9). This reduces the ability of the Stokes amplitude correction 
to balance the dispersion, until at the point of bifurcation described above a balance 
is no longer possible and wave groups of permanent envelope cannot occur. 

Hasimoto & Ono (1972) derived the cubic Schrodinger equation for the envelope of 
nonlinear wave groups on water of finite depth, showing that the coefficient of the 
cubic term changes sign a t  non-dimensional depth ,u = 1-363. They obtained solutions 
of permanent envelope which have the elliptic dn form when ,u > 1.363, and the 
elliptic sn form when p < 1.363. The envelopes sketched in figure 1 agree qualitatively 
with the dn solutions, but the sn solutions when ,u < 1.363 could not be found. The 
mathematical reason for the failure of their solutions in this range is that the envelope 
is described by lsnl, not by sn, and the lsnl function is not a solution of the cubic 
Schrodinger equation because sn changes sign within each wavelength. The physical 
rewon for the failure is that the second-order uniform mean flow described in the 
previous paragraph increases as the depth decreases, and cannot be balanced to 
produce an envelope of permanent form at shallow depths. 

.5. Linear stability 
The linear stability of permanent waves and nonlinear wave groups is now 

investigated. Small perturbations are applied to the set of solutions calculated in 5 3 
and $4, and the resulting linear evolution equations for the perturbations are solved 
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with the assistance of linear-algebra routines on a computer (Wilkinson & Reinsch 
1971). 

The previous description of a permanent wave (3.1 a) is now modified by setting the 
fundamental wavenumber equal to k, ( = L/l). Side-band modulations at wavenumbers 
k, f 1 are introduced when the perturbed permanent wave is described by 

1 m  
7 = &l?(l,t)expi{(l/k,)(z-ct)}+j I: [8(nko- l,t)expi{(n-l/k,)(z-ct)} 

n = l  

+a,expin(z-ct)+B(nk,+ l,t)expi{(n+ I/Ic,,) (z-ct))]+c.c. (5.1) 

It should be noted that the amplitudes 8 are amplitudes in a frame of reference moving 
with velocity c, which although small in magnitude do have strong dependence on t. 
The amplitude 8( 1, t ) ,  for example, contains a contribution to q representing the swell 
slightly forced from its natural velocity, together with modulation contributions 
generated by nonlinear interactions. The physical description here is of a permanent 
wave with wavenumbers nk, and amplitudes a,, n = 1,2,  , , ., interacting with swell 
of wavenumber 1 at much smaller amplitude, causing a time variation in the swell 
amplitude as well as triggering side-band modulations at  wavenumbers nk, & 1, 
n = 1,2, .... The linearization in the small amplitude of the swell means that the 
side-band modulations at wavenumbers nk, rf: 2, nk, & 3, . . . are neglected because 
they are proportional to higher products of the swell amplitude. Although this lineari- 
zation is valid initially, it  may not be valid over longer times, to be investigated 
separately ( $6). 

The evolution equations for the perturbed Fourier amplitudes are found by sub- 
stitution of the harmonics from the above description into (2.5), followed by lineari- 
zation in &. The set of first-order linear differential equations may be rearranged 
to describe the dependent variables B(nk,+ I ) ,  n = 0, 1,2, ..., and B*(nk,- l ) ,  
n = 1,2,3,  . . ., as functions of st. Solutions are sought for which each fi has the time 
dependence exp (ihst), with the number of values of n being increased step-by-step 
until the eigenvalues converge to within a prescribed precision. Linear instability is 
associated with the occurrence of complex-conjugate pairs of values for A. The set of 
equations and the method of solution are generalizations of those described previously 
(Bryant 1974, $4). 

The stability diagram for permanent waves at a given wave steepness e = 0.1, as a 
function of the depth ratio p, is presented in figure 2. The minimum value of /I a t  which 
instability occurs is 1.35, in close agreement with the value 1.36 calculated in the limit 
as 6 tends to zero (Whitham 1974, 9 16.1 1).  The cross-section of figure 2 at /I = 5, the 
imaginary part of the eigenvalues, is drawn in figure 3 (a). The real part of the eigen- 
values at  p = 5 is drawn in figure 3 (b), splitting into two distinct real eigenvalues in 
the stable section of the range of 1/L. It is of interest that the transition from instability 
to stability is of the same form as that calculated by Longuet-Higgins (1978), for 
example in his figures 1 and 2. His calculations were made at constant l /L  = 4 and 
constant p = 00 as a function of E. The present calculations illustrated in figures 3 (a, b) 
describe the transition a t  constant E = 0.1 and constant p = 5 as a function of 1/L. 
The two eigenvalues in the stable section of the range are associated with the two side- 
band modulations at  wavenumbers k, & 1. This association is explored now in more 
detail. 
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FIGURE 2. The stability diagram for permanent waves, E = 0.1, aa a function of the depth ratio p 
and the fundamental-to-swell wavelength ratio ZIL. The outer curve is the instability boundary 
Ai = 0, and the inner curve is the contour of constant growth rate A, = 0.02. 

The nonlinear frequency of the perturbation at  wavenumber ko- 1 is, from (2.8), 

Q) 

@ko-l - 1.' Rko-l, ko n, k, n * 
n = l  

If further nonlinear contribution is negligible, the associated eigenvalue is, from (5 .  l), 

nko-l = l /kO)c-wko-ll /s+& x R k o - l , k o n , k o n a ~ ~  (5.2a) 
m 

n = l  

and, for wavenumber ko + 1, 
m 

h 0 + l  = [(l -k l / k O ) c - W k o + l l / E +  is 2 Rko+l,kon,konu~' (5 .2b)  
n = l  

The two estimated eigenvalues are drawn in figure 3 (c). 
The agreement between the calculated and estimated eigenvalues in figures 3 (b, c) 

respectively is good, with the estimated eigenvalues coalescing into a complex- 
conjugate pair when they are sufficiently close. The nonlinear frequencies derived 
originally in (2.8) do provide a good estimate of the frequencies of the perturbations 
after modification by the permanent wave. The estimated eigenvalues in (5.2) are 
identified with these nonlinear frequencies relative to the permanent wave. Instability 
is associated with the nonlinear frequencies of pairs of side-band modulations being 
sufficiently close in the frame of reference of the permanent wave. These conclusions 
are the generalization to a permanent wave composed of any number of harmonics of 
the reasons advanced by Phillips (1974, pp. 207-211) for the linear instability of a 
Stokes wave composed of two harmonics. 

Nonlinear wave groups of permanent envelope were found to be linearly unstable 
over the whole parameter range investigated. Previous calculations (Bryant 1979) at 
large values of ko on water of infinite depth, and the present calculations on pertur- 
bations of the extended wave-group description (4.1) at smaller values of ko on water 
of finite depth, all displayed instability. The margin of instability waa found to be 
much smaller than that for side-band modulation of a permanent wave train, the 



454 P. J .  Bryant 

IIL 

FIGURE 3. (a) The imaginary part of the calculated complex eigenvalues for thc permanent wave, 
E = 0.1, p = 5, equivalent to the cross-section of figure 2 at p = 5. (b )  The real part of the 
calculated complex eigenvalues, 0 < Z/L < 0.24, and the lowest calculated eigenvalue pair, 
0.24 < Z/L < 0.5. (c) The estimated eigenvalues (5.2). 

stability being almost neutral. The association between the calculated eigenvalues 
and the eigenvalues estimated from the nonlinear frequencies is now explored. 

The dominant spectral contribution to the wave group is from the wave band 
centred on ko, with subsidiary contributions from wavenumbers near 1 and wave 
bands centred on 2k0, 3k0, . . . . The wave group is modulated in the present calculations 
at side-band wavenumbers ko - 1 and k, + 1, two wavenumbers already present in the 
wave group. The linear-stability analysis must be applied therefore to perturbations 
of all the harmonics in the ware group, in exactly the same manner as if the pertur- 
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FIGURE 4. The lowest calculated real eigenvalue h and the estimated side-band eigenvalues a,, 
R,, for the nonlinear wave group, B = 0.1, k, = 10, as a function of the depth ratio p. 

bation were that of swell at  wavenumber 1. The nonlinear frequency of the pertur- 
bation to the harmonic a t  wavenumber k is, from (2.8)) 

@ k -  ie2 I; Rk,n,naz.  
n 

The estimated eigenvalues associated with wavenumbers k,  - 1, k,, k, + 1 are therefore, 
from (4.1), 

Qko- l  = [mko - C/kO + - @ko-l l /c  f i e  Rk,-1, n ,  na: ( 5 . 3 ~ )  
n 

n 
(5 .3b)  

(5 .3c )  

The dependent variables in the stability analysis are 8,) BE, for all wavenumbers k 
in the original wave group. The real eigenvalues occur therefore in pairs of equal 
magnitude and opposite sign, while the complex eigenvalues occur in the double pair 
f A, & ih,. When the estimated eigenvalues are matched with the calculated eigen- 
values, it is found that the six central estimated eigenvalues & &,-I, f aka, f Qk,+l 

are associated with the four calculated complex eigenvalues and the smallest pair of 
calculated real eigenvalues. The smallest calculated real eigenvalue h is compared 
with Q, and all in figure 4 for wave groups of central wavenumber 10, &g a function 
of the depth ratio p. Both A, and A, are of magnitude about in the double pairs of 
calculated complex eigenvalues. It appears that the complex eigenvalues are associated 
with and &(Qk0-, - Qko+l), while the smallest pair of real eigenvalues is associated 

The corresponding physical mechanism of instability may be as follows. The 
perturbation to the central harmonic with wavenumber k, propagates under the 
influence of all harmonics at a velocity almost equal to that of the central harmonic 
itself. Near-resonant transfer of energy can take place, and the perturbation grows 
exponentially. At  the same time, the perturbations to the two side-band harmonics 

with k(Qko-l + Qko+l)* 
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with wavenumbers k, - 1, k, + 1 ,  when superposed, propagate with a velocity 
sufficiently close to that of the central harmonic that near-resonant transfer of 
energy causes their exponential growth also. In contrast with a periodic wave train, 
the harmonics of the nonlinear wave groups are already in a state of balance between 
the central and side-band wavenumbers, resulting in the perturbations to the side- 
band harmonics having much smaller growth rates than the side-band modulations 
to a periodic wave train. 

6. Evolution equations 
The linear-stability analysis of $ 5  describes the initial evolution of a modulated 

wave or wave group. The evolution over longer times is determined by numerical 
solution of the evolution equations (2.5). 

A modulated permanent wave train is represented by the surface displacement 

(6 . la )  
1 "  .k 
2+1  k, 

?j = - B k ( t )  eXp '& - (X - C t )  + C.C., 

where B k ( t )  = A k ( t ) e x p i  (t -- u k )  t ( k  = 1 ,  2 ,  ...), (6 . lb)  

and c is the velocity of the unmodulated permanent wave. Equations (2.5) then 
become 

m' k + l - l  
+&is2 2 Z Rk,t,mBrB,nBk+i-m ( k =  1 , 2 , * - . ) -  (6.2) 

1=1 m = l  

This set of differential equations is converted to the set of difference equations 

m k+Z-1 
+ i s  Z x Rk,,,B~(€t)B,(Et)Bk+l-,(Bt) ( k  = 1 , 2  ,... ). (6.3) 

1=1 m = l  

These equations are integrated step-by-step from the initial conditions for the 
modulated permanent wave. 

The computational effort required to calculate the tertiary interactions was reduced 
considerably by making the same simplification as was described in Q 4. This consisted 
in including the tertiary interactions between harmonics within each of the wave bands 
centred on k,, 2k,, . . . , and that bounded by 1, but not including the tertiary inter- 
actions between harmonics in different wave bands. Calculations over long times with 
and without this simplification showed no significant difference in the solutions 
obtained, but a considerable improvement in computation time. 

The representation used to describe the evolution of a modulated nonlinear wave 
group is the same as that of (4.1) except that the constant amplitudes ak are replaced 
by time-dependent amplitudes Bk( f ) .  It is implicit in this representation that the 
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modulation to the ware group is made at one of the wavenumbers already present 
in the group. Modulations at  other wavenumbers have been found previously to yield 
no new properties (Bryant 1979). The set of difference equations used for the numerical 
calculations are of similar form to (6.3), and the same simplification in the calculation 
of the tertiary interactions was made here also. 

In  087-9, a number of examples are presented of the evolution over long times 
of modulated waves and wave groups. A common feature of these examples is the 
small initial amplitude of the modulation, about 1 % of the amplitude of the unmodu- 
lated wave or wave group. This corresponds to the interaction of background ocean 
swell with the ocean surface wave field. The interaction of swell of wavenumber 1 with 
a wave train of fundamental wavenumber k, (9 1) generatas side-band harmonics a t  
wavenumbers k, & 1. These then interact resonantly with the fundamental, with the 
original modulation at  wavenumber 1 having only a passive role. For this reason, thc 
initial modulation in the examples following is chosen to occur directly at the side- 
band wavenumbers k, f 1. It was found that, when the initial modulation was applied 
at the swell wavenumber 1, the only difference was that the initial growth of the 
side-band harmonics was flabter than that illustrated in the examples following. 

7. Modulated Stokes wave : cyclic recurrence 
The first example to be presented is one with good cyclic recurrence. The Stokes 

wave with parameters e =0.1, y = 5 is modulated at 5 times the fundamental 
wavelength (1/L = 0.2). This modulation is seen from figure 3 to be unstable, with a 
growth rate near the maximum for the wave. Using the notation defined in $ 5 ,  the 
fundament.al has wavenumber 5, with the initial side-band modulation applied at 
wavenumbers 4 and 6. The initial conditions used for the numerical integration are 
B, = 0.01, B, = 0.9958, Be = 0.01, B,, = 0.0503, B,, = 0.0041, B, = 0 otherwise; 
1 < k < 16, with c = 1.00497. 

The moduli of the Fourier amplitudes B,, B,, B6 are drawn in figure 5 (a) together 
with the linearized solutions calculated by the methods of 5. The cyclic recurrence 
has a period of about st = 88n. The initial agreement between the linearized solution 
and the full solution is good while IB41 and lB61 are less than about 0.25. The linearized 
solution then continues to grow exponentially, while the full solution attains a 
maximum value and returns close to its initial value. 

The surface displacement is illustrated in two ways. In  figure 5 ( b )  the surface 
displacement itself is shown in a frame of reference moving with the phase velocity c of 
the unmodulated Stokes wave. The interesting feature of this figure is the interval in 
the centre of the cycle of recurrence where the side-band harmonics have maximum 
values, causing the wave profile to change more rapidly than elsewhere, with individual 
crests rising to larger amplitudes. This is the interval where irreversible nonlinear 
processes such as wave subsidence or wave breaking would occur for sufficiently large 
values of c, the steepness of the unmodulated wave. The initial modulation of only 
about 1 yo of the Stokes-wave amplitude concentrates energy from the 5 waves of the 
modulation wavelength into single waves in turn. It may be noted also that there is an 
advance in phase of the uniform wave train between the two sides of this central 
interval. 

The upper side of the envelope of the surface displacement is shown in figure 6 ( c )  in 
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FIUURE 5 (a). For legend see facing page. 

a frame of reference moving with the group velocity of the fundamental harmonic 
k, = 5. The initial cross-section covers the same fen wavelengths as in figure 5 (b), with 
the modula$ion being a maximum a t  x = 0 and at  x = 1On. The ridges in the central 
interval of the cycle of recurrence originate from the initial maxima in the modulation. 
These ridges propagate with a velocity in excess of the group velocity of the funda- 
mental harmonic. Yuen & Ferguson (1  978a) integrated the cubic Schrodinger equation 
from initial conditions of the same form but with a larger modulation than that used 
here. The results of their calculations (figure 1 (a) of their paper) are qualitatively the 
same as those illustrated in figure 5 (c). 
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FIQURE 6. (a) Moduli of the Fourier amplitudes B,, B,, B,  for the modulated permanent wave, 
E = 0.1, p = 6, 1/L = 0-2. The upper curves for B, and B ,  ,are the solutions calculated by the 
linear-stability analysis of 5 6. (b) Cross-eectiona of the water-surface displacement at  intervals 
ct = 14n, in a frame of reference moving with the wave velocity, for two modulation wave- 
lengths of the modulated permanent wave E = 0.1, p = 6, 1/L = 0.2. (Horizontal contraction 
577.) (c) Cross-sections of the upper side of the water-surface envelope at  intervals ~t = 1*6n, 
in a frame of reference moving with the group velocity, for two modulation wavelengths of the 
modulated permanent wave, E = 0.1, ,u = 6, ZfL = 0.2. (Horizontal contraction 677.) 

8. Modulated Stokes wave: recurrence obscured 
The Stokes wave with parameters E = 0.1, p = 5 is modulated now at 10 times the 

fundamental wavelength ( l /L  = 0.1). Reference to figure 3 shows that this modulation 
is unstable and, further, that the second harmonic of the modulation ( l /L  = 0.2) is also 
unstable. The initial growth of the modulation is therefore exponential, according to 
the linearized theory. The nonlinear interaction of the modulation with itself generates 
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FIGURE 6 (a). For legend see facing page. 

harmonics which themselves grow exponentially, obscuring the cyclic recurrence of 
the original modulation. The fundamental now has wavenumber 10, with the initial 
side-band modulation being applied at  wavenumbers 9 and 11. The initial conditions 
are B, = 0.01, B,, = 0.9958, B,, = 0.01, B,, = 0.0503, B,, = 0.0041, B, = Ootherwise; 
1 < k < 24, 28 Q k Q 32, with c = 1.00497. 

The moduli of the Fourier amplitudes B,, B,, B,,, BI1, B,, are drawn in figure 6 (a) 
together with the linearized solutions calculated by the methods of CJ 5. The degradation 
in the periodic structure of B,, B,,, B,, is seen to be associated with the initial resonant 
growth and subsequent oscillation of B, and B,,. The resultant structure of all 5 
harmonics is a superposition of the slower cyclic structure of the central 3 harmonics 
and the faster cyclic struct,ure of the outer 2 harmonics. 
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FIQURE 6. (a) Moduli of the Fourier amplitudes B,, B,, B,,, B,,, B,, for the modulated per- 
manent wave, s = 0.1, p = 5, l /L  = 0.1. The upper curves for B, and B,, are the solutions 
calculated by the linear-stability analysis of $6. (b) Cross-sections of the water-surface displace- 
ment at intervals et = 21t, in a frame of reference moving with the wave velocity, for one modu- 
lation wavelength of the modulated permanent wave, 6 = 0-1, p = 6,  Z/L = 0.1. (Horizontal 
contraction 6n.) (c) Cross-sections of the upper side of the water-surface envelope at intervals 
st = 2n, in a frame of reference moving with the group velocity, for one modulation wavelength 
of the modulated permanent wave, e = 0.1, p = 6,  Z/L = 0.1. (Horizontal contraction 67r.) 
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k 1 
Bk - 0'0022 

k 11 
B,  0.2657 

k 18 

k 30 
B, 0.0007 

Bk 0.0026 

2 6 7 8 9 10 

12 13 14 15 16 17 
0.1010 0.0371 0.0129 0.0039 0.0011 04008 

19 20 21 22 23 24 
0.0067 0.0117 0.0120 0.0084 04047 0.0024 

31 
04008 

-0.0014 0.0015 0.0078 0.0370 0.1699 0.3820 

TABLE 1 

The surface displacement is illustrated in figure 6 (b) in a frame of reference moving 
with the unmodulated Stokes-wave velocity c. After the initial interval, there is a 
continual concentration of energy in individual crests in turn within the 10 waves of 
the modulation wavelength. Bearing in mind that the cross-sections in the figure are 
at intervals of slow time et = 27r, the surface is similar in appearance to the ocean 
surface, with continual growth and decay of individual waves within a group structure. 

The envelope of the surface displacement is shown in figure 6(c)  in D frame of 
reference moving with the group velocity of the fundamental harmonic k, = 10. The 
major ridge originates from the initial maximum modulation at x = 0, traverses 
the figure with a velocity in excess of the group velocity into the next modulation 
wavelength, when its successor appears on the figure as the ridge in the fop-left corner. 
The smaller subsidiary ridge has the same spacing from the major ridge as the two 
ridges in figure 5 (c), associating it with the growth of the harmonics at  wavenumbers 
8 and 12. There is good agreement between the form of figure 6 (c) and the form of the 
corresponding solution of the cubic Schrodinger equation by Yuen & Ferguson (1978a, 
figure 5, case 2). 

9. Modulated wave group: cyclic recurrence 
The nonlinear wave group with parameters B = 0.1, p = 5, k, = 10 is illustrated at  

the top of figure 1. It is modulated now by a perturbation of amplitude 0-0 1 at each of 
the side-band wavenumbers 9 and 11. The initial conditions are given in table 1. The 
parameters c and a were given the values for the unmodulated wave group, namely 
c = 0.5004, a = 0-2366. The differecce equations solved from these initial conditions 
are identical with equations (6.3) except that the coefficient of the second term is 
replaced by k - nk, 

where n = 0 for 1 < k < 2, n = 1 for 6 Q k Q 16, n = 2 for 17 < k < 24, n = 3 for 
30 < k G 31. 

A comparison of the estimated eigenvalues for wave stability (5.2) and wave-group 
stability (5.3) shows that the latter are approximately a factor 8 smaller in magnitude. 
The evolution of the modulated wave group above is therefore a factor E slower than 
the evolution of a modulated wave train. This is reflected in the growth of the moduli 
of the Fourier amplitudes B,, B,,, B,,, which are drawn in figure 7 as functions of E 2 t  

rather than et. The upper curve in each case is the solution found by the linear-stability 
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FIGURE 7. Moduli of the Fourier amplitudes B,, B,,, B,, for the modulated nonlinear wave 
group E = 0.1, p = 6 ,  k, = 10,1/L = 0-1. The upper curves are the solutions calculated by the 
linear stability analysis of 55. 

analysis, and the lower curve is the solution calculated from the nonlinear evolution 
equations. Reasonable cyclic recurrence is found for Bll, the harmonic with the greatest 
variation. The variation in magnitude of all the harmhics is much smaller than that 
occurring in a modulated Stokes wave, and is too small to be detected in a sketch of 
the upper envelope of the surface. The amplitkde of the modulation has to be increased 
from 1 % to 10 yo of the wave group alpplitude for a small oscillation of the envelope 
to be discernible (Bryant 1979, figure 5 ( c ) ) .  
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10. Discussion 
It is well known that a Stokes wave is linearly unstable to side-band modulations. 

At the non-dimensional depth p = 5, for example, figure 2 shows that a permanent 
wave of steepness E = 0.1 is unstable to the side-band modulations triggered by swell 
for which the permanent-to-swell wavelength ratio 1/L is less than about 0.24. To put 
it another way, if such a permanent wave has wavenumber k,, it is unstable to all 
side-band modulations in the range 0.76ko-1.24k,. Each pair k, f K within this range 
interacts resonantly with the permanent wave according to the mechanism described 
by Benjamin (1967). If swell of 20 times the wavelength of this permanent wave 
triggers the side-band modulations, for example, the resulting evolution of the wave 
train is dominated by the harmonics with wavenumbers 0.8k0, 0.85k0, 0.9k0, 0.95k0, 
k,, l-OSk,, l.lk,, 1.15k0, 1.2k0. The pair 0-95k0, 1-05k0 is triggered initially by the swell 
of wavenumber 0.05k0, and all other harmonics within the range of resonance are 
generated by further nonlinear interactions. 

The nonlinear wave group of group wavelength 20 times the central wavelength is 
dominated by the same 9 harmonics listed above, except that now the resonant inter- 
actions between these harmonics are in equilibrium. The side-band modulations 
triggered by swell now interact with harmonics which are in equilibrium, and in which 
the individual harmonics have smaller amplitudes than that of the fundamental in a 
permanent wave of the same total amplitude. In contrast with permanent waves, there- 
fore, nonlinear wave groups are only weakly affected by swell andside-band modulation. 
Nonlinear wave groups tend towards permanent-wave trains in the limit of vanishing 
amplitude, when the difference between their side-band modulation also vanishes. 

The modulation by swell of a wave train weakens on shallower water, until on water 
which is sufficiently shallow (u < 1.35 at E = 0.1) the wave train retains its form and 
is not converted into a group struoture by swell propagating in the same direction. 
Nonlinear wave groups of permanent envelope flatten as the water depth decreases, 
until on water which is sufficiently shallow (p < 1.56 at E = 0.1) they no longer exist. 
It is only on deeper water that the modulation of wave trains by swell is of a magnitude 
to be of interest. 

If the spectrum of ocean waves on deeper water is sharply peaked so that the side- 
band harmonics generated by swell are far from equilibrium with the central harmonic, 
the periodic wave train described by the sharply peaked spectrum evolves under the 
influence of swell into a changing group structure. During this evolution, individual 
waves rise for short times to larger amplitudes, during which irreversible processes 
such 8.5 wave breaking may occur. 

This work was partially supported by a contract with the Office of Naval Research 
while I was a Visiting Professor at the University of California, San Diego. I am grateful 
to John Miles for making this visit possible. 

Appendix 
w-1 = -wl  (1 > 0). 
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